TY - JOUR
T1 - Uniform bound and convergence for elliptic homogenization problems
AU - Yeh, Li-Ming
PY - 2016/12/1
Y1 - 2016/12/1
N2 - Uniform bound and convergence for the solutions of elliptic homogenization problems are concerned. The problem domain has a periodic microstructure; it consists of a connected subregion with high permeability and a disconnected matrix block subset with low permeability. Let ϵ∈ (0 , 1) denote the size ratio of the period to the whole domain, and let ω2∈ (0 , 1) denote the permeability ratio of the disconnected matrix block subset to the connected subregion. For elliptic equations with diffusion depending on the permeability, the elliptic solutions are smooth in the connected subregion but change rapidly in the disconnected matrix block subset. More precisely, the solutions in the connected subregion can be bounded uniformly in ω, ϵ in Hölder norm, but not in the matrix block subset. It is known that the elliptic solutions converge to a solution of some homogenized elliptic equation as ω, ϵ converge to 0. In this work, the Lp convergence rate for p∈ (2 , ∞] is derived. Depending on strongly coupled or weakly coupled case, the convergence rate is related to the factors ω,ϵ,ωϵ for the former and related to the factors ω, ϵ for the latter.
AB - Uniform bound and convergence for the solutions of elliptic homogenization problems are concerned. The problem domain has a periodic microstructure; it consists of a connected subregion with high permeability and a disconnected matrix block subset with low permeability. Let ϵ∈ (0 , 1) denote the size ratio of the period to the whole domain, and let ω2∈ (0 , 1) denote the permeability ratio of the disconnected matrix block subset to the connected subregion. For elliptic equations with diffusion depending on the permeability, the elliptic solutions are smooth in the connected subregion but change rapidly in the disconnected matrix block subset. More precisely, the solutions in the connected subregion can be bounded uniformly in ω, ϵ in Hölder norm, but not in the matrix block subset. It is known that the elliptic solutions converge to a solution of some homogenized elliptic equation as ω, ϵ converge to 0. In this work, the Lp convergence rate for p∈ (2 , ∞] is derived. Depending on strongly coupled or weakly coupled case, the convergence rate is related to the factors ω,ϵ,ωϵ for the former and related to the factors ω, ϵ for the latter.
KW - Elliptic homogenization problem
KW - Permeability
KW - Two-phase media
UR - http://www.scopus.com/inward/record.url?scp=84940979745&partnerID=8YFLogxK
U2 - 10.1007/s10231-015-0530-y
DO - 10.1007/s10231-015-0530-y
M3 - Article
AN - SCOPUS:84940979745
VL - 195
SP - 1803
EP - 1832
JO - Annali di Matematica Pura ed Applicata
JF - Annali di Matematica Pura ed Applicata
SN - 0373-3114
IS - 6
ER -