Statistical distance estimation algorithms With RSS measurements for indoor LTE-A networks

Chien Hua Chen, Kai-Ten Feng

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)


An indoor base station (BS), such as a remote radio head or home eNodeB, is a cost-effective solution to achieve ubiquitous access and positioning functions in indoor Long-Term Evolution Advanced (LTE-A) networks. In this paper, two distance estimation algorithms adopt received signal strength (RSS) to estimate the corresponding distance between a BS and a mobile station. The statistical inference distance estimation (SIDE) algorithm is proposed to provide a consistent distance estimator when the particle number is larger than an inferential theoretic lower bound given a confidence level and an error constraint. Moreover, the particle-based distance estimation (PDE) algorithm is proposed to estimate distance information with the technique of particle filtering under mixed line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in indoor LTE-A networks. Furthermore, the theoretic Cramér-Rao lower bound (CRLB), considering the variations from fading effects and time-variant channels, is derived as a benchmark to evaluate the precision of distance estimators. The performance of the proposed SIDE algorithm is verified through simulations, and the results fulfill the requirements of different confidence levels and error constraints. Furthermore, the proposed PDE algorithm outperforms other distance estimation schemes and reveals robustness against mixed-sight and time-variant indoor LTE-A networks.

頁(從 - 到)1709-1722
期刊IEEE Transactions on Vehicular Technology
出版狀態Published - 1 二月 2017

指紋 深入研究「Statistical distance estimation algorithms With RSS measurements for indoor LTE-A networks」主題。共同形成了獨特的指紋。