Plasma-induced charging damage in ultrathin (3-nm) gate oxides

Chi Chun Chen, Horng-Chih Lin, Chun Yen Chang, Mong Song Liang, Chao-Hsin Chien, Szu Kang Hsien, Tiao Yuan Huang, Tien-Sheng Chao

研究成果: Article同行評審

18 引文 斯高帕斯(Scopus)

摘要

Plasma-induced damage in various 3-nm-thick gate oxides (i.e., pure oxides and N2O-nitrided oxides) was investigated by subjecting both nMOS and pMOS antenna devices to a photoresist ashing step after metal pad definition. Both charge-to-breakdown and gate leakage current measurements indicated that large leakage current occurs at the wafer center as well as the wafer edge for pMOS devices, while only at the wafer center for nMOS devices. These interesting observations could be explained by the strong polarity dependence of ultra-thin oxides in charge-to-breakdown measurements of nMOS devices. In addition, pMOS devices were found to be more susceptible to charging damage, which can be attributed to the intrinsic polarity dependence in tunneling current between n- and p-MOSFET,s. More importantly, our experimental results demonstrated that stress-induced leakage current (SILC) caused by plasma damage can be significantly suppressed in N2O-nitrided oxides, compared to pure oxides, especially for pMOS devices. Finally, nitrided oxides were also found to be more robust when subjected to high temperature stressing. Therefore, nitrided oxides appear to be very promising for reducing plasma charging damage in future ULSI technologies employing ultrathin gate oxides.

原文English
頁(從 - 到)1355-1360
頁數6
期刊IEEE Transactions on Electron Devices
47
發行號7
DOIs
出版狀態Published - 1 七月 2000

指紋 深入研究「Plasma-induced charging damage in ultrathin (3-nm) gate oxides」主題。共同形成了獨特的指紋。

引用此