On the existence of rainbows in 1-factorizations of K2n

David E. Woolbright*, Hung-Lin Fu

*Corresponding author for this work

研究成果: Article同行評審

13 引文 斯高帕斯(Scopus)

摘要

A 1-factor of a graph G = (V, E) is a collection of disjoint edges which contain all the vertices of V. Given a 2n - 1 edge coloring of K2n, n ≥ 3, we prove there exists a 1-factor of K2n whose edges have distinct colors. Such a 1-factor is called a "Rainbow."

原文English
頁(從 - 到)1-20
頁數20
期刊Journal of Combinatorial Designs
6
發行號1
DOIs
出版狀態Published - 1 一月 1998

指紋 深入研究「On the existence of rainbows in 1-factorizations of K<sub>2n</sub>」主題。共同形成了獨特的指紋。

引用此