TY - JOUR
T1 - Novel metallo-dendrimers containing various Ru core ligands and dendritic thiophene arms for photovoltaic applications
AU - Satapathy, Rudrakanta
AU - Ramesh, Mohan
AU - Padhy, Harihara
AU - Chiang, I. Hung
AU - Chu, Chih Wei
AU - Wei, Kung-Hwa
AU - Lin, Hong-Cheu
PY - 2014/9/21
Y1 - 2014/9/21
N2 - Three series of supramolecular mono-(i.e., Ru1G1, Ru1G2 and Ru1G3), bis-(i.e., BTRu2G1, BTRu2G2 and BTRu2G3) and tris-(i.e., TPARu3G1, TPARu3G2 and TPARu3G3) Ru-based dendritic complexes were synthesized. Their photophysical and electrochemical properties were investigated. These metallo-dendritic complexes covered a broad absorption range of 250-750 nm with optical bandgaps of 1.51-1.86 eV. The energy levels of the metallo-dendrimers can be effectively adjusted not only by different generations of dendritic thiophene arms but also by their π-conjugated core ligands bearing various electron donor (i.e., triphenylamine) and acceptor (i.e., benzothiadiazole) moieties. Due to the donor-acceptor effect, the bis-Ru-based dendrimers containing a benzothiadiazole electron-acceptor core ligand showed the highest power conversion efficiency (PCE) among these three series of metallo-dendrimers. The tris-Ru-based architecture with a triphenylamine electron-donor core ligand revealed moderate photovoltaic performance. Among the different generations (G1-G3) of dendrimers, the third generation (G3) possessed the highest PCE values in each series of Ru-based dendrimers. Hence, the third generation bis-'Ru'-based dendrimer BTRu2G3 blended with PC70BM (1:3 w/w) showed the highest PCE value of 0.77% (without the aid of additives or annealing), which is the highest efficiency among all bulk hetero-junction (BHJ) solar cells containing metallo-dendrimers reported to date.
AB - Three series of supramolecular mono-(i.e., Ru1G1, Ru1G2 and Ru1G3), bis-(i.e., BTRu2G1, BTRu2G2 and BTRu2G3) and tris-(i.e., TPARu3G1, TPARu3G2 and TPARu3G3) Ru-based dendritic complexes were synthesized. Their photophysical and electrochemical properties were investigated. These metallo-dendritic complexes covered a broad absorption range of 250-750 nm with optical bandgaps of 1.51-1.86 eV. The energy levels of the metallo-dendrimers can be effectively adjusted not only by different generations of dendritic thiophene arms but also by their π-conjugated core ligands bearing various electron donor (i.e., triphenylamine) and acceptor (i.e., benzothiadiazole) moieties. Due to the donor-acceptor effect, the bis-Ru-based dendrimers containing a benzothiadiazole electron-acceptor core ligand showed the highest power conversion efficiency (PCE) among these three series of metallo-dendrimers. The tris-Ru-based architecture with a triphenylamine electron-donor core ligand revealed moderate photovoltaic performance. Among the different generations (G1-G3) of dendrimers, the third generation (G3) possessed the highest PCE values in each series of Ru-based dendrimers. Hence, the third generation bis-'Ru'-based dendrimer BTRu2G3 blended with PC70BM (1:3 w/w) showed the highest PCE value of 0.77% (without the aid of additives or annealing), which is the highest efficiency among all bulk hetero-junction (BHJ) solar cells containing metallo-dendrimers reported to date.
UR - http://www.scopus.com/inward/record.url?scp=84906231085&partnerID=8YFLogxK
U2 - 10.1039/c4py00444b
DO - 10.1039/c4py00444b
M3 - Article
AN - SCOPUS:84906231085
VL - 5
SP - 5423
EP - 5435
JO - Polymer Chemistry
JF - Polymer Chemistry
SN - 1759-9954
IS - 18
ER -