MEMS fabrication based on nickel-nanocomposite: Film deposition and characterization

Kwok Siong Teh*, Yu-Ting Cheng, Liwei Lin

*Corresponding author for this work

研究成果: Article同行評審

18 引文 斯高帕斯(Scopus)


Electrosynthesized metal-nanocomposites represent a unique class of microelectromechanical systems (MEMS) structural material due to their compatibility with MEMS and CMOS fabrication technologies via a one-step, selective on-chip deposition process at low temperatures (∼50-90 °C). In this paper, particle-reinforced, electrosynthesized nickel-nanocomposites of various compositions have been successfully demonstrated as potential structural materials for MEMS. We have achieved low-temperature, stress-free, wafer-level fabrication of nano-composite MEMS via both an electroless nickel (EN) and an electrolytic nickel (EL) deposition process, with the addition of uniformly dispersed micro- and nanoparticles of either cordierite (diameter ≈ 100 nm-5 νm) or diamond (diameter ∼ 4 nm). The as-deposited nickel-cordierite films exhibit better thermal compatibility with silicon, compared to nickel. The measured coefficients of thermal expansion (CTE) of EN-cordierite and EN are 17.34 ppm K-1 and 26.69 ppm K-1, respectively. Stress-temperature measurement of EN-cordierite composite also confirms that residual stress decreases with the incorporation of cordierite. Finally, by adding various concentrations of nanodiamond particles into an EL matrix, it is found that higher diamond concentration renders these films more compressively stressed.

頁(從 - 到)2205-2215
期刊Journal of Micromechanics and Microengineering
出版狀態Published - 1 十二月 2005

指紋 深入研究「MEMS fabrication based on nickel-nanocomposite: Film deposition and characterization」主題。共同形成了獨特的指紋。