Identification of control chart patterns using wavelet filtering and robust fuzzy clustering

Chih-Hsuan Wang*, Way Kuo

*Corresponding author for this work

研究成果: Article同行評審

49 引文 斯高帕斯(Scopus)

摘要

This paper proposes a hybrid framework composed of filtering module and clustering module to identify six common types of control chart patterns, including natural pattern, cyclic pattern, upward shift, downward shift, upward trend, and downward trend. In particular, a multi-scale wavelet filter is designed for denoising and its performance is compared to single-scale filters, including mean filter and exponentially weighted moving average (EWMA) filter. Moreover, three fuzzy clustering algorithms, based on fuzzy c means (FCM), entropy fuzzy c means (EFCM) and kernel fuzzy c means (KFCM), are adopted to compare their performance of pattern classification. Experimental results demonstrate that the excellent performance of EFCM and KFCM against outliers, especially in the case of high noise level embedded in the input data. Therefore, a hybrid framework combining wavelet filter with robust fuzzy clustering is suggested and proposed in this paper. Compared to neural network based approaches, the proposed method provides a promising way for the on-line recognition of control chart patterns because of its efficient computation and robustness against outliers.

原文English
頁(從 - 到)343-350
頁數8
期刊Journal of Intelligent Manufacturing
18
發行號3
DOIs
出版狀態Published - 1 六月 2007

指紋 深入研究「Identification of control chart patterns using wavelet filtering and robust fuzzy clustering」主題。共同形成了獨特的指紋。

引用此