摘要
It is important for a network to tolerate as many faults as possible. With the graph representation of an interconnection network, a k-regular hamiltonian and hamiltonian connected network is super fault-tolerant hamiltonian if it remains hamiltonian after removing up to k - 2 vertices and/or edges and remains hamiltonian connected after removing up to k - 3 vertices and/or edges. Super fault-tolerant hamiltonian networks have an optimal flavor with regard to the fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity. For this reason, a cycle composition framework was proposed to construct a (k + 2)-regular super fault-tolerant hamiltonian network based on a collection of n k-regular super fault-tolerant hamiltonian networks containing the same number of vertices for it n >= 3 and k >= 5. This paper is aimed to emphasize that the cycle composition framework can be still applied even when k = 4. (c) 2007 Elsevier Inc. All rights reserved.
原文 | English |
---|---|
頁(從 - 到) | 245-256 |
頁數 | 2 |
期刊 | Applied Mathematics and Computation |
卷 | 196 |
發行號 | 1 |
DOIs | |
出版狀態 | Published - 15 二月 2008 |