Fault-tolerant hamiltonian connectedness of cycle composition networks

Tz-Liang Kueng, Cheng-Kuan Lin, Tyne Liang, Jiann-Mean Tan, Lih Hsing Hsu

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

It is important for a network to tolerate as many faults as possible. With the graph representation of an interconnection network, a k-regular hamiltonian and hamiltonian connected network is super fault-tolerant hamiltonian if it remains hamiltonian after removing up to k - 2 vertices and/or edges and remains hamiltonian connected after removing up to k - 3 vertices and/or edges. Super fault-tolerant hamiltonian networks have an optimal flavor with regard to the fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity. For this reason, a cycle composition framework was proposed to construct a (k + 2)-regular super fault-tolerant hamiltonian network based on a collection of n k-regular super fault-tolerant hamiltonian networks containing the same number of vertices for it n >= 3 and k >= 5. This paper is aimed to emphasize that the cycle composition framework can be still applied even when k = 4. (c) 2007 Elsevier Inc. All rights reserved.
原文English
頁(從 - 到)245-256
頁數2
期刊Applied Mathematics and Computation
196
發行號1
DOIs
出版狀態Published - 15 二月 2008

指紋 深入研究「Fault-tolerant hamiltonian connectedness of cycle composition networks」主題。共同形成了獨特的指紋。

引用此