Efficient FRET Approaches toward Copper(II) and Cyanide Detections via Host-Guest Interactions of Photo-Switchable [2]Pseudo-Rotaxane Polymers Containing Naphthalimide and Merocyanine Moieties

Feng Cheng Ho, Yi Jing Huang, Chang Ching Weng, Chia Hua Wu, Yaw Kuen Li, Judy I. Wu, Hong Cheu Lin*

*Corresponding author for this work

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

A supramolecular [2]pseudo-rotaxane containing a naphthalimide-based pillararene host and a spiropyran-based imidazole guest was synthesized and investigated in a semiaqueous solution with 90% water fraction. Upon UV exposure, the close-form structure of nonemissive spiropyran guest could be transformed into the open-form structure of red-emissive merocyanine guest reversibly, which was utilized as a monofluorophoric sensor to detect copper(II) and cyanide ions. Moreover, the naphthalimide host as an energy donor with green photoluminescence (PL) emission at 505 nm was complexed with the merocyanine guest as an energy acceptor with red PL emission at 650 nm in 1:1 molar ratio to generate a [2]pseudo-rotaxane polymer, which was further verified by the diffusion coefficients of DOSY nuclear magnetic resonance (NMR) measurements. Due to the Förster resonance energy transfer (FRET) processes, the bifluorophoric [2]pseudo-rotaxane produced more efficient ratiometric PL behavior to induce a stronger red PL emission than that of the monofluorophoric guest; therefore, the PL sensor responses of the supramolecular [2]pseudo-rotaxane toward copper(II) and cyanide ions could be further amplified via the FRET-OFF processes to turn off red PL emission of the reacted merocyanine acceptor and to recover green PL emission of the naphthalimide donor. Accordingly, the best and prominent values of the limit of detection (LOD) for the host-guest detections toward Cu2+ and CN- were 0.53 and 1.34 μM, respectively. The highest red MC emission with the optimum FRET processes of [2]pseudo-rotaxane was maintained around room temperature (20-40 °C) in wide pH conditions (pH = 3-13), which can be utilized in the cell viability tests to prove the nontoxic and remarkable biomarker of [2]pseudo-rotaxane to detect Cu2+ and CN- in living cells. The developed FRET-OFF processes with ratiometric PL behavior of the bifluorophoric supramolecular [2]pseudo-rotaxane polymer will open a new avenue to the future applications of chemo-and biosensors.

原文English
期刊ACS Applied Materials and Interfaces
DOIs
出版狀態Accepted/In press - 2020

指紋 深入研究「Efficient FRET Approaches toward Copper(II) and Cyanide Detections via Host-Guest Interactions of Photo-Switchable [2]Pseudo-Rotaxane Polymers Containing Naphthalimide and Merocyanine Moieties」主題。共同形成了獨特的指紋。

引用此