Effects of simvastatin on cardiac neural and electrophysiologic remodeling in rabbits with hypercholesterolemia

Yen Bin Liu, Yuan Teh Lee, Hui Nam Pak, Shien-Fong Lin, Michael C. Fishbein, Lan S. Chen, C. Noel Bairey Merz, Peng Sheng Chen*

*Corresponding author for this work

研究成果: Article同行評審

18 引文 斯高帕斯(Scopus)

摘要

Background: Significant cardiac neural and electrophysiologic remodeling occurs with hypercholesterolemia (HC). Whether simvastatin can reverse HC-induced remodeling is unclear. Objective: The purpose of this study was to determine the mechanisms underlying the antiarrhythmic effects of statins. Methods: Rabbits (N = 38) were fed HC chow (HC), standard chow (Control), HC chow followed by standard chow (Withdrawal), or HC chow and simvastatin (Statin) for 8 weeks. The hearts then were Langendorff-perfused for electrophysiologic studies. Nerves were identified by immunostaining of growth-associated protein-43 (GAP43) and tyrosine hydroxylase (TH). Action potential duration (APD) restitution in normal hearts with (N = 5) and without (N = 5) simvastatin therapy also was studied. Results: Serum cholesterol levels (mg/dL) were 1,855 ± 533 in HC, 50 ± 21 in Control, 570 ± 115 in Withdrawal, and 873 ± 112 in Statin groups (P <.001). Compared with HC (16,700 ± 5,342; 12,200 ± 3,878 μm2/mm2), the Statin group had significantly reduced GAP43-positive (10,289 ± 3,393 μm2/mm2, P = .03) and TH-positive (7,685 ± 2,959 μm2/mm2, P = .04) nerve density, respectively. APD was longer in HC rabbits than in controls (192 ± 20 ms vs 174 ± 17 ms; P <.03). Withdrawal and Statin groups had less APD prolongation than HC group. Statin group has less repolarization heterogeneity than HC group (P <.01). Statin therapy flattened the slope of APD restitution in normal hearts. Ventricular fibrillation was either induced or occurred spontaneously in 79% of hearts in HC, 20% in Control, and 66% in Withdrawal groups. However, there was no VF in hearts of Statin group (P <.001). Conclusion: Simvastatin significantly reduced vulnerability to ventricular fibrillation via the mechanism of reduction of HC-induced neural and electrophysiologic remodeling.

原文English
頁(從 - 到)69-75
頁數7
期刊Heart Rhythm
6
發行號1
DOIs
出版狀態Published - 1 一月 2009

指紋 深入研究「Effects of simvastatin on cardiac neural and electrophysiologic remodeling in rabbits with hypercholesterolemia」主題。共同形成了獨特的指紋。

引用此