APPLYING GENERALIZED WEIGHTED MEAN AGGREGATION TO IMPULSIVE NOISE REMOVAL OF IMAGES

Kuan Lin Chen, Jyh-Yeong Chang

研究成果: Paper同行評審

1 引文 斯高帕斯(Scopus)

摘要

In this paper, we apply generalized weighted mean to construct interval-valued fuzzy relations for grayscale image impulse noise detection and correction. First, we employ two weighting parameters and perform the weighted mean aggregation for the central pixel and its eight neighbor pixels in a 3x3 sliding window across the image. Then, to counter the over-weighting of a big difference term, we apply a saturation threshold transfer function to these eight pixel difference values. Finally, the image noise map is obtained through a threshold operation on the cumulative differences. To decrease the noise detection error, weighting parameters of the mean can be learned by the gradient method caste in discrete formulation. Moreover, to get higher PSNR in the corrected image, we have experienced from the training that we will select weight of 20 for noise rate smaller than 20% and 50 for noise rate greater than 20%, on erroneous noisy than that on the erroneous non-noise pixel. By the experiment, we have shown that the integration of interval-valued fuzzy relations with the weighted mean aggregation algorithm can effectively detect the image noise pixels and then correct them thereafter.
原文English
頁面538-543
頁數6
DOIs
出版狀態Published - 2014
事件13th International Conference on Machine Learning and Cybernetics, ICMLC 2014 - Lanzhou, China
持續時間: 13 七月 201416 七月 2014

Conference

Conference13th International Conference on Machine Learning and Cybernetics, ICMLC 2014
國家China
城市Lanzhou
期間13/07/1416/07/14

指紋 深入研究「APPLYING GENERALIZED WEIGHTED MEAN AGGREGATION TO IMPULSIVE NOISE REMOVAL OF IMAGES」主題。共同形成了獨特的指紋。

引用此