TY - GEN
T1 - A rough-joint model of DEM considering roughness effect
AU - Chiu, C. C.
AU - Weng, Meng-Chia
PY - 2018/1/1
Y1 - 2018/1/1
N2 - To consider the roughness effect on shear strength and deformation of rock joint, this research proposed a joint model for the discrete element method. The background theory of the proposed model is based on Barton’s shear strength criterion which is widely used to describe non-cohesive joint with roughness. To implement Barton’s criterion in DEM software, three calculation modifications were performed, including exceeded force recapture, contact area equalization, and stiffness adjustment. Through the modifications, the force of each joint contact could be calculated, which reasonably reflect the joint mechanical behavior under different normal stress. Afterward, the proposed model was verified by comparing to the theoretical model. The results indicated that the proposed model rationally describes the shear stiffness influenced by mobilized joint roughness coefficient during the shear process. The comparisons showed that the proposed model is versatile in simulating the shear displacement with loading-unloading-reloading cycles, normal closure, and shear dilation of joint.
AB - To consider the roughness effect on shear strength and deformation of rock joint, this research proposed a joint model for the discrete element method. The background theory of the proposed model is based on Barton’s shear strength criterion which is widely used to describe non-cohesive joint with roughness. To implement Barton’s criterion in DEM software, three calculation modifications were performed, including exceeded force recapture, contact area equalization, and stiffness adjustment. Through the modifications, the force of each joint contact could be calculated, which reasonably reflect the joint mechanical behavior under different normal stress. Afterward, the proposed model was verified by comparing to the theoretical model. The results indicated that the proposed model rationally describes the shear stiffness influenced by mobilized joint roughness coefficient during the shear process. The comparisons showed that the proposed model is versatile in simulating the shear displacement with loading-unloading-reloading cycles, normal closure, and shear dilation of joint.
KW - Discrete Element Method
KW - Rock Joint
KW - Smooth-joint Model
UR - http://www.scopus.com/inward/record.url?scp=85064258643&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85064258643
T3 - ISRM International Symposium - 10th Asian Rock Mechanics Symposium, ARMS 2018
BT - ISRM International Symposium - 10th Asian Rock Mechanics Symposium, ARMS 2018
PB - International Society for Rock Mechanics
Y2 - 29 October 2018 through 3 November 2018
ER -