Abstract
For the first time a ZnO nanorod-based Z-scheme heterostructure system was proposed and realized for efficient photoelectrochemical water splitting. The samples were prepared by depositing a thin layer of SnO 2 on the Au surface of Au particle-decorated ZnO nanorods. For ZnO-Au-SnO 2 nanorods, the embedded Au can mediate interfacial charge transfer by promoting electron transfer from the conduction band of SnO 2 to the valence band of ZnO. This vectorial charge transfer resulted in the situation that the photoexcited electrons accumulated at ZnO while the photogenerated holes concentrated at SnO 2 , giving ZnO-Au-SnO 2 substantially high redox powers. Time-resolved photoluminescence spectra suggested that the interfacial charge transfer across the ZnO/Au/SnO 2 interface was significantly improved as a result of the Z-scheme charge transfer mechanism. With the substantially high redox powers and significantly improved interfacial charge transfer, ZnO-Au-SnO 2 nanorods performed much better as a photoanode in photoelectrochemical water splitting than pristine ZnO, plasmonic Au-decorated ZnO and type-II SnO 2 -coated ZnO nanorods did. The present study has provided a viable approach to exploit Z-scheme photoanodes in the design of efficient artificial photosynthesis systems for solar energy conversion.
Original language | English |
---|---|
Pages (from-to) | 15720-15729 |
Number of pages | 10 |
Journal | Nanoscale |
Volume | 8 |
Issue number | 34 |
DOIs | |
State | Published - 14 Sep 2016 |