Why the nonrelativistic potential model and the ultrarelativistic bag model give the same spectra

Rosenstein Baruch*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

It is remarked that the Schrödinger equation with a linear potential and the zero-mass Klein-Gordon equation with a quadratic potential transform to each other by the duality transformation: pbr;r(1/b)p. Therefore the eigenvalues of these equations are the same. The first equation describes the main features of potential models while it is shown that the second describes the main feature of the spectra of the MIT bag model. This is the reason that one obtains the same spectra from the two physically very different models. The wave functions of these models are connected by a Fourier transform.

Original languageEnglish
Pages (from-to)813-816
Number of pages4
JournalPhysical Review D
Volume33
Issue number3
DOIs
StatePublished - 1 Jan 1986

Fingerprint Dive into the research topics of 'Why the nonrelativistic potential model and the ultrarelativistic bag model give the same spectra'. Together they form a unique fingerprint.

Cite this