Variational and Hierarchical Recurrent Autoencoder

Jen-Tzung Chien, Chun Wei Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Despite a great success in learning representation for image data, it is challenging to learn the stochastic latent features from natural language based on variational inference. The difficulty in stochastic sequential learning is due to the posterior collapse caused by an autoregressive decoder which is prone to be too strong to learn sufficient latent information during optimization. To compensate this weakness in learning procedure, a sophisticated latent structure is required to assure good convergence so that random features are sufficiently captured for sequential decoding. This study presents a new variational recurrent autoencoder (VRAE) for sequence reconstruction. There are two complementary encoders consisting of a long short-term memory (LSTM) and a pyramid bidirectional LSTM which are merged to discover the global and local dependencies in a hierarchical latent variable model, respectively. Experiments on Penn Treebank and Yelp 2013 demonstrate that the proposed hierarchical VRAE is able to learn the complementary representation as well as tackle the posterior collapse in stochastic sequential learning. The performance of recurrent autoencoder is substantially improved in terms of perplexity.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3202-3206
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - 1 May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
CountryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Keywords

  • hierarchical model
  • recurrent neural network
  • Sequence generation
  • variational autoencoder

Fingerprint Dive into the research topics of 'Variational and Hierarchical Recurrent Autoencoder'. Together they form a unique fingerprint.

Cite this