Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling

Di Yi*, Jian Liu, Satoshi Okamoto, Suresha Jagannatha, Yi Chun Chen, Pu Yu, Ying-hao Chu, Elke Arenholz, R. Ramesh

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

75 Scopus citations

Abstract

We investigate the possibility of controlling the magnetic phase transition of the heterointerface between a half-doped manganite La0.5Ca 0.5MnO3 and a multiferroic BiFeO3 (BFO) through magnetoelectric coupling. Using macroscopic magnetometry and element-selective x-ray magnetic circular dichroism at the Mn and Fe L edges, we discover that the ferroelectric polarization of BFO controls simultaneously the magnetization of BFO and La0.5Ca0.5MnO3 (LCMO). X-ray absorption spectra at the oxygen K edge and linear dichroism at the Mn L edge suggest that the interfacial coupling is mainly derived from the superexchange between Mn and Fe t2g spins. The combination of x-ray absorption spectroscopy and mean-field theory calculations reveals that the d-electron modulation of Mn cations changes the magnetic coupling in LCMO, which controls the enhanced canted moments of interfacial BFO via the interfacial coupling. Our results demonstrate that the competition between ferromagnetic and antiferromagnetic instability can be modulated by an electric field at the heterointerface, providing another pathway for the electrical field control of magnetism.

Original languageEnglish
Article number127601
JournalPhysical Review Letters
Volume111
Issue number12
DOIs
StatePublished - 18 Sep 2013

Fingerprint Dive into the research topics of 'Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling'. Together they form a unique fingerprint.

Cite this