Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides

Yunmin Zhu, Zuyun He, YongMan Choi, Huijun Chen, Xiaobao Li, Bote Zhao, Yi Yu, Hui Zhang, Kelsey A. Stoerzinger, Zhenxing Feng, Yan Chen*, Meilin Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Developing highly efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts is critical for many energy devices. While regulating the proton-coupled electron transfer (PCET) process via introducing additive into the system has been reported effective in promoting OER activity, controlling the PCET process by tuning the intrinsic material properties remains a challenging task. In this work, we take double perovskite oxide PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) as a model system to demonstrate enhancing OER activity through the promotion of PCET by tuning the crystal orientation and correlated proton diffusion. OER kinetics on PBSCF thin films with (100), (110), and (111) orientation, deposited on single crystal LaAlO3 substrates, were investigated using electrochemical measurements, density functional theory (DFT) calculations, and synchrotron-based near ambient X-ray photoelectron spectroscopy. The results clearly show that the OER activity and the ease of deprotonation depend on orientation and follow the order of (100) > (110) > (111). Correlated with OER activity, proton diffusion is found to be the fastest in the (100) film, followed by (110) and (111) films. Our results point out a way of boosting PCET and OER activity, which can also be successfully applied to a wide range of crucial applications in green energy and environment.
Original languageEnglish
Article number4299
Number of pages10
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 27 Aug 2020

Keywords

  • OXYGEN-ION DIFFUSION
  • REDUCTION ACTIVITY
  • THIN-FILMS
  • EVOLUTION
  • SURFACE
  • ELECTROCATALYSTS
  • HYDROXYLATION
  • COEFFICIENTS
  • REACTIVITY
  • CHEMISTRY

Fingerprint Dive into the research topics of 'Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides'. Together they form a unique fingerprint.

Cite this