Tunable metallic conductance in ferroelectric nanodomains

Peter Maksymovych*, Anna N. Morozovska, Pu Yu, Eugene A. Eliseev, Ying-hao Chu, Ramamoorthy Ramesh, Arthur P. Baddorf, Sergei V. Kalinin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

110 Scopus citations


Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal-insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator-metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.

Original languageEnglish
Pages (from-to)209-213
Number of pages5
JournalNano Letters
Issue number1
StatePublished - 11 Jan 2012


  • domain wall
  • Ferroelectric
  • lead-zirconate
  • metallic
  • MIT
  • scanning probe microscopy

Fingerprint Dive into the research topics of 'Tunable metallic conductance in ferroelectric nanodomains'. Together they form a unique fingerprint.

Cite this