TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

Tian Hang, Hui-Jiuan Chen, Shuai Xiao, Chengduan Yang, Meiwan Chen, Jun Tao, Han-Ping Shieh, Bo-Ru Yang, Chuan Liu, Xi Xie*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano-and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.
Original languageEnglish
Article number171431
JournalRoyal Society Open Science
Issue number12
StatePublished - Nov 2017


  • micro-nanoscale structure; hierarchical nanowires; self-cleaning surfaces; superhydrophobic coatings; nanowire thin film

Fingerprint Dive into the research topics of 'TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating'. Together they form a unique fingerprint.

Cite this