Three-orthogonal-direction stress mapping around a fatigue-crack tip using neutron diffraction

E-Wen Huang*, Soo Yeol Lee, Wanchuck Woo, Kuan Wei Lee

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Instrument Scientist, is with the Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353, South Korea Quantitative determination of the stress fields around the crack tip is a challenging and important subject to understand the fatigue crack-growth mechanism. In the current study, we measured the distribution of residual stresses and the evolution of the stress fields around a fatigue crack tip subjected to the constant-amplitude cyclic loading in a 304L stainless steel compact-tension (CT) specimen. The three orthogonal stress components (i.e., crack growth, crack opening, and through thickness) of the CT specimen were determined as a function of distance from the crack tip with 1-mm spatial resolution along the crack-propagation direction. In-situ neutron-diffraction results show that the enlarged tensile stresses were developed during loading along the through-thickness direction at a localized volume close to the crack tip, resulting in the lattice expansion in all three orthogonal directions during Pmax. The current study suggests that the atypical plane strainlike behavior observed at the midthickness position might be the reason for the mechanism of the faster crack-growth rate inside the interior than that near the surface.

Original languageEnglish
Pages (from-to)2785-2791
Number of pages7
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Issue number8
StatePublished - 1 Aug 2012

Fingerprint Dive into the research topics of 'Three-orthogonal-direction stress mapping around a fatigue-crack tip using neutron diffraction'. Together they form a unique fingerprint.

Cite this