The critical grid size and transmission radius for local-minimum-free grid routing in wireless ad hoc and sensor networks

Tsi-Ui Ik*, Peng Jun Wan, Chao Min Su, Chen Wei Huang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

In grid routing, the plane is tessellated into equal-sized square cells. Two cells are called neighbor cells if they share a common edge, and two nodes are called routing neighbors if they are in neighbor cells and within each other's transmission range. If communication parties are in the same cell, packets can be transmitted directly; otherwise, packets are forwarded to routing neighbors that are in cells closer to destination cells. As a greedy strategy, grid routing suffers the existence of local minima at which no neighbor nodes exist for relaying packets. To guarantee deliverability, in this paper, we investigate two vital parameters of grid routing, called the grid size and the transmission radius. Assume that nodes are represented by a Poisson point process with rate n over a unit-area square, and let l denote the grid size and r the transmission radius. First, we show that if for some constant and r = √5l, then = 1 is the threshold for deliverability. In other words, there almost surely do not exist local minima if > 1 and there almost surely exist local minima if < 1. Next, for any given > 1, we give sufficient and necessary conditions to determine the critical transmission radius (CTR) for deliverability. Then, we show that as β ≅ 1.092, the CTR is the minimum over all > 1. Simulation results are given to validate this theoretical work.

Original languageEnglish
Pages (from-to)1621-1631
Number of pages11
JournalComputer Journal
Volume53
Issue number10
DOIs
StatePublished - 1 Dec 2010

Keywords

  • disk graphs
  • geographic greedy routing
  • grid routing
  • local minima
  • random deployment
  • wireless ad hoc networks
  • wireless sensor networks

Fingerprint Dive into the research topics of 'The critical grid size and transmission radius for local-minimum-free grid routing in wireless ad hoc and sensor networks'. Together they form a unique fingerprint.

Cite this