Technology roadmaps on the ballistic transport in strain engineered nanoscale CMOS devices

Steve S. Chung, Y. J. Tsai, C. H. Tsai, P. W. Liu, Y. H. Lin, C. T. Tsai, G. H. Ma, S. C. Chien, S. W. Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

As device channel length continues to scale beyond 90nm, carrier transport in the ballistic regime becomes critically important. In this paper, the strain engineering and its correlation to the ION current enhancement of CMOS devices in the ballistic regime has been examined. It was characterized by two parameters, the ballistic transport efficiency and the injection velocity. Experimental verifications on very high mobility n- and p-MOSFET channel/substrate orientations with various strains have been made. For nMOSFETs, it shows that uniaxial tensile-stress using CESL is more efficient in current enhancement than the biaxial stress with bulk strained-SiGe technique. For the pMOSFETs, compressive stress using uniaxial or biaxial has been evaluated for various structures. It was found that both ballistic efficiency and the injection velocity can be enhanced in a specific pMOS structure with appropriate combination of CESL and biaxial strain. The technology roadmaps have then been established from advanced 65nm CMOS devices. These results provide a guideline for designing high performance strained technology for CMOS devices in the sub-100nm regime.

Original languageEnglish
Title of host publicationIEEE Conference on Electron Devices and Solid-State Circuits 2007, EDSSC 2007
Pages23-26
Number of pages4
DOIs
StatePublished - 1 Dec 2007
EventIEEE Conference on Electron Devices and Solid-State Circuits 2007, EDSSC 2007 - Tainan, Taiwan
Duration: 20 Dec 200722 Dec 2007

Publication series

NameIEEE Conference on Electron Devices and Solid-State Circuits 2007, EDSSC 2007

Conference

ConferenceIEEE Conference on Electron Devices and Solid-State Circuits 2007, EDSSC 2007
CountryTaiwan
CityTainan
Period20/12/0722/12/07

Fingerprint Dive into the research topics of 'Technology roadmaps on the ballistic transport in strain engineered nanoscale CMOS devices'. Together they form a unique fingerprint.

Cite this