Synthesis of Free-Standing Flexible rGO/MWCNT Films for Symmetric Supercapacitor Application

Amit Kumar, Nagesh Kumar, Yogesh Sharma, Jihperng Leu, Tseung Yuen Tseng*

*Corresponding author for this work

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

Herein, we report a novel, simple, and cost-effective way to synthesize flexible and conductive rGO and rGO/MWCNT freestanding films. The effects of MWCNT addition on the electrochemical performance of rGO/MWCNT nanocomposite films are investigated in some strong base aqueous electrolytes, such as KOH, LiOH, and NaOH via three-electrode system. The supercapacitor behavior of the films is probed via cyclic voltammetry, galvanostatic charging-discharging, and electrochemical impedance spectroscopy. The structural and morphological studies of the films are performed by X-ray diffractometer, Raman spectrometer, surface area analyzer, thermogravimetric analysis, field emission scanning electron microscope and transmission electron microscope. The rGO/MWCNT film synthesized with 10 wt% MWCNTs (GP10C) exhibits high specific capacitance of 200 Fg−1, excellent cyclic stability with 92% retention after 15,000 long cycle test, small relaxation time constant (~ 194 ms), and high diffusion coefficient (7.8457 × 10−9 cm2 s−1) in 2 M KOH electrolyte. Furthermore, the symmetric supercapacitor coin cell with GP10C as both anode and cathode using 2 M KOH as electrolyte demonstrates high energy density of 29.4 Whkg−1 and power density of 439 Wkg−1 at current density 0.1 Ag−1 and good cyclic stability with 85% retention of the initial capacitance at 0.3 Ag−1 after 10,000 cycles. Such a high performance of the GP10C film in the supercapacitor can be ascribed to the large surface area and small hydration sphere radius and high ionic conductivity of K+ cations in KOH electrolyte.

Original languageEnglish
Article number266
JournalNanoscale Research Letters
Volume14
Issue number1
DOIs
StatePublished - 6 Aug 2019

Keywords

  • Energy and power densities
  • Graphene
  • MWCNTs
  • Reduced graphene oxide
  • Specific capacitance
  • Supercapacitor

Fingerprint Dive into the research topics of 'Synthesis of Free-Standing Flexible rGO/MWCNT Films for Symmetric Supercapacitor Application'. Together they form a unique fingerprint.

  • Cite this