Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite

Ta Jen Wu, Hsiu Hsuan Huang, Cheng Wen Lan, Chi Hung Lin, Fu Yin Hsu, Yng Jiin Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

113 Scopus citations

Abstract

Microspheres comprised of hydroxyapatite particles, dispersed in reconstituted fibrous collagen, were prepared and characterized. The hydroxyapatite particles distributed evenly throughout the collagen matrix of the microsphere. Diameters of the reconstituted collagen fibers ranged from 30 to 90nm, and exhibited a regular banding pattern with cross-striation of 50-60nm under transmission electron microscope, suggesting that the reconstitution of collagen was not hindered by the hydroxyapatite particulates. When osteoblast cells isolated from newborn rat calvaria were seeded and cultured on the microspheres, the cell density increased from 2×10 4 to 3.2×104cells/cm2 in 8 days. Von Kossa staining exhibited spotty accumulation of mineral deposits on microspheres indicating matrix mineralization of the cultured cells. Analyses by electron microscopy and confocal microscopy showed that the osteoblast cells spread and attached to the microsphere via focal adhesion, while F-actin and DNA staining demonstrated the presence of stress fibers; moreover, mitotic cells could be observed. Together, these results indicate that osteoblast cells are capable of proliferating, differentiating and mineralizing in the matrix of the microspheres, and suggest that the microspheric composite is a potential grafting material for future clinical applications.

Original languageEnglish
Pages (from-to)651-658
Number of pages8
JournalBiomaterials
Volume25
Issue number4
DOIs
StatePublished - Feb 2004

Keywords

  • Hydroxyapatite
  • Morphology
  • Osteoblast
  • Reconstituted collagen

Fingerprint Dive into the research topics of 'Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite'. Together they form a unique fingerprint.

Cite this