Stability of intelligent transportation network dynamics: A daily path flow adjustment considering travel time differentiation

Ming Chorng Hwang*, Hsun-Jung Cho, You Heng Huang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A theoretic formulation on how traffic time information distributed by ITS operations influences the trajectory of network flows is presented in this paper. The interactions between users and ITS operator are decomposed into three parts: (i) travel time induced path flow dynamics (PFDTT); (ii) demand induced path flow dynamics (PFDD); and (iii) predicted travel time dynamics for an origin-destination (OD) pair (PTTDOD). PFDTT describes the collective results of user's daily route selection by pairwise comparison of path travel time provided by ITS services. The other two components, PTTDOD and PFDD, are concentrated on the evolutions of system variables which are predicted and observed, respectively, by ITS operators to act as a benchmark in guiding the target system towards an expected status faster. In addition to the delivered modelings, the stability theorem of the equilibrium solution in the sense of Lyapunov stability is also provided. A Lyapunov function is developed and employed to the proof of stability theorem to show the asymptotic behavior of the aimed system. The information of network flow dynamics plays a key role in traffic control policy-making. The evaluation of ITS-based strategies will not be reasonable without a well-established modeling of network flow evolutions.

Original languageEnglish
Article number609729
JournalMathematical Problems in Engineering
Volume2015
DOIs
StatePublished - 1 Jan 2015

Fingerprint Dive into the research topics of 'Stability of intelligent transportation network dynamics: A daily path flow adjustment considering travel time differentiation'. Together they form a unique fingerprint.

Cite this