Spatiotemporal super-resolution with cross-task consistency and its semi-supervised extension

Han Yi Lin, Pi Cheng Hsiu, Tei Wei Kuo, Yen Yu Lin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Spatiotemporal super-resolution (SR) aims to upscale both the spatial and temporal dimensions of input videos, and produces videos with higher frame resolutions and rates. It involves two essential sub-tasks: spatial SR and temporal SR. We design a two-stream network for spatiotemporal SR in this work. One stream contains a temporal SR module followed by a spatial SR module, while the other stream has the same two modules in the reverse order. Based on the interchangeability of performing the two sub-tasks, the two network streams are supposed to produce consistent spatiotemporal SR results. Thus, we present a cross-stream consistency to enforce the similarity between the outputs of the two streams. In this way, the training of the two streams is correlated, which allows the two SR modules to share their supervisory signals and improve each other. In addition, the proposed cross-stream consistency does not consume labeled training data and can guide network training in an unsupervised manner. We leverage this property to carry out semi-supervised spatiotemporal SR. It turns out that our method makes the most of training data, and can derive an effective model with few high-resolution and high-frame-rate videos, achieving the state-of-the-art performance. The source code of this work is available at https://hankweb.github.io/STSRwithCrossTask/.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages615-622
Number of pages8
ISBN (Electronic)9780999241165
StatePublished - 2020
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: 1 Jan 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
CountryJapan
CityYokohama
Period1/01/21 → …

Cite this