Single channel wireless EEG device for real-time fatigue level detection

Li-Wei Ko, Wei Kai Lai, Wei Gang Liang, Chun Hsiang Chuang, Shao Wei Lu, Yi Chen Lu, Tien Yang Hsiung, Hsu Hsuan Wu, Chin Teng Lin*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

19 Scopus citations


Driver fatigue problem is one of the important factors of traffic accidents. Recent years, many research had investigated that using EEG signals can effectively detect driver's drowsiness level. However, real-time monitoring system is required to apply these fatigue level detection techniques in the practical application, especially in the real-road driving. Therefore, it required less channels, portable and wireless, real-time monitoring and processing techniques for developing the real-time monitoring system. In this study, we develop a single channel wireless EEG device which can real-time detect driver's fatigue level on the mobile device such as smart phone or tablet. The developed device is investigated to obtain a better and precise understanding of brain activities of mental fatigue under driving, which is of great benefit for devolvement of detection of driving fatigue system. This system consists of a Bluetooth-enabled one channel EEG, a regression model, and smartphone, which was a platform recording and transforming the raw EEG data to useful driving status. In the experiment, this was a sustained-attention driving task to implement in a virtual-reality (VR) driving simulator. To training model and develop the system, we were performed for 15 subjects to study Electroencephalography (EEG) brain dynamics by using a mobile and wireless EEG device. Based on the outstanding training results, the leave-one-subject-out cross validation test obtained 90% fatigue detection accuracy. These results indicate that the combination of a smartphone and wireless EEG device constitutes an effective and easy wearable solution for detecting and preventing driver fatigue in real driving environments.

Original languageEnglish
Title of host publication2015 International Joint Conference on Neural Networks, IJCNN 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479919604, 9781479919604, 9781479919604, 9781479919604
StatePublished - 28 Sep 2015
EventInternational Joint Conference on Neural Networks, IJCNN 2015 - Killarney, Ireland
Duration: 12 Jul 201517 Jul 2015

Publication series

NameProceedings of the International Joint Conference on Neural Networks


ConferenceInternational Joint Conference on Neural Networks, IJCNN 2015


  • Brain computer interface
  • driver drowsiness detection
  • wearable devices

Fingerprint Dive into the research topics of 'Single channel wireless EEG device for real-time fatigue level detection'. Together they form a unique fingerprint.

Cite this