Abstract
Second-harmonic-generation (SHG) has proved itself as an important contrast mechanism in microscopic applications. Its noninvasiveness, optical sectioning capability, and high-penetrability provide attractive features in observation of thick biological tissues. Fibrous proteins, such as myosin and collagen, are dominant SHG harmonophores in vertebrates. Due to their biophotonic crystal nature, SHGs from these proteins are known to exhibit specific polarization dependencies, reflecting local molecule arrangements. Here the authors demonstrate a scheme to distinguish SHG from myosin-based muscle fibers and intertwined collagenous perimysium through polarization selection, without complicated staining or sample/image processing required.
Original language | English |
---|---|
Article number | 103903 |
Journal | Applied Physics Letters |
Volume | 91 |
Issue number | 10 |
DOIs | |
State | Published - 2007 |