Selecting the number of classes under latent class regression: A factor analytic analogue

Guan-Hua Huang*

*Corresponding author for this work

Research output: Contribution to journalReview article

5 Scopus citations

Abstract

Recently, the regression extension of latent class analysis (RLCA) model has received much attention in the field of medical research. The basic RLCA model summarizes shared features of measured multiple indicators as an underlying categorical variable and incorporates the covariate information in modeling both latent class membership and multiple indicators themselves. To reduce complexity and enhance interpretability, one usually fixes the number of classes in a given RLCA. Often, goodness of fit methods comparing various estimated models are used as a criterion to select the number of classes. In this paper, we propose a new method that is based on an analogous method used in factor analysis and does not require repeated fitting. Two ideas with application to many settings other than ours are synthesized in deriving the method: a connection between latent class models and factor analysis, and techniques of covariate marginalization and elimination. A Monte Carlo simulation study is presented to evaluate the behavior of the selection procedure and compare to alternative approaches. Data from a study of how measured visual impairments affect older persons' functioning are used for illustration.

Original languageEnglish
Pages (from-to)325-345
Number of pages21
JournalPsychometrika
Volume70
Issue number2
DOIs
StatePublished - 1 Jun 2005

Keywords

  • Categorical data
  • Factor analysis
  • Finite mixture model
  • Goodness of fit test
  • Latent profile model
  • Marginalization
  • Monte Carlo simulation
  • Residuals in generalized linear models

Fingerprint Dive into the research topics of 'Selecting the number of classes under latent class regression: A factor analytic analogue'. Together they form a unique fingerprint.

  • Cite this