Seismic collapse performance of concentrically steel braced frames

Chui-Hsin Chen, Stephen Mahin

Research output: Contribution to conferencePaperpeer-review

10 Scopus citations


Conventional special concentrically braced frames (SCBF) have been widely used due to their efficiency in resisting lateral forces. Under severe lateral loading, braces will buckle, laterally and locally, leading to a deterioration of the strength and stiffness of the SCBF and under repeated excursions of cyclic inelastic deformation to fracture of braces. On the other hand, buckling restrained braced frames (BRBF) provide more stable hysteretic behavior. The collapse resistance of SCBF and BRBF systems is examined. A series of 2, 3, 6, 12 and 16 story tall, double story X braced frame archetypes designed using the provisions of ASCE-7/05 for seismic design category Dmin and D max are analyzed using the ATC-63 methodology. The paper examines modeling of steel braced frames, including brace buckling and rupture due to low cycle fatigue, as well as the application of the ATC 63 methodology. Results of representative static pushover and dynamic analyses are presented. For the assumptions in the ATC 63 methodology and the current ability to model braced frame behavior, it was found that, except for low-rise SCBF structures, a high confidence of achieving the collapse prevention limit state was provided. Reasons for the behavior predicted are presented, along with recommendations for improved design and evaluation methods.

Original languageEnglish
Number of pages10
StatePublished - 1 Jan 2010
EventStructures Congress 2010 - Orlando, FL, United States
Duration: 12 May 201015 May 2010


ConferenceStructures Congress 2010
CountryUnited States
CityOrlando, FL

Fingerprint Dive into the research topics of 'Seismic collapse performance of concentrically steel braced frames'. Together they form a unique fingerprint.

Cite this