Run time adaptive network slimming for mobile environments

Hong Ming Chiu, Kuan Chih Lin, Tian-Sheuan Chang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Modern convolutional neural network (CNN) models offer significant performance improvement over previous methods, but suffer from high computational complexity and are not able to adapt to different run-time needs. To solve above problem, this paper proposes an inference-stage pruning method that offers multiple operation points in a single model, which can provide computational power-accuracy modulation during run time. This method can perform on shallow CNN models as well as very deep networks such as Resnet101. Experimental results show that up to 50% savings in the FLOP are available by trading away less than 10% of the top-1 accuracy.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728103976
DOIs
StatePublished - 26 May 2019
Event2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019 - Sapporo, Japan
Duration: 26 May 201929 May 2019

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2019-May
ISSN (Print)0271-4310

Conference

Conference2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019
CountryJapan
CitySapporo
Period26/05/1929/05/19

Fingerprint Dive into the research topics of 'Run time adaptive network slimming for mobile environments'. Together they form a unique fingerprint.

Cite this