Robot motion command simplification and scaling

Kuu-Young Young*, Shi Huei Liu

*Corresponding author for this work

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

It has been observed that human limb motions are not very accurate, leading to the hypothesis that the human motor control system may have simplified motion commands at the expense of motion accuracy. Inspired by this hypothesis, we propose learning schemes that trade motion accuracy for motion command simplification. When the original complex motion commands capable of tracking motion accurately are reduced to simple forms, the simplified motion commands can then be stored and manipulated by using learning mechanisms with simple structures and scanty memory resources, and they can be executed quickly and smoothly. This paper also proposes learning schemes that can perform motion command scaling, so that simplified motion commands can be provided for a number of similar motions of different movement distances and velocities without recalculating system dynamics. Simulations based on human motions are reported that demonstrate the effectiveness of the proposed learning schemes in implementing this accuracy-simplification tradeoff.

Original languageEnglish
Pages (from-to)455-469
Number of pages15
JournalIEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
Volume32
Issue number4
DOIs
StatePublished - 1 Aug 2002

Keywords

  • Accuracy-simplification tradeoff
  • Command simplification and scaling
  • Robot learning control

Fingerprint Dive into the research topics of 'Robot motion command simplification and scaling'. Together they form a unique fingerprint.

Cite this