Reliability evaluation for an intermittent production system with stochastic number of normal machines

Yi-Kuei Lin*, Ping Chen Chang, Louis Cheng Lu Yeng, Po Shiang Shih

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


In an intermittent production system (IPS), a number of normal machines in a workstation may present multiple levels owing to maintenance, possibility of failure, etc. It means that the number of machines in each workstation is stochastic. This paper proposes a key performance index (KPI), which reflects the probability that an IPS can complete demand d within time constraint T. Such a probability is defined as system reliability. The IPS is modeled as a stochastic network, in which each arc is regarded as a workstation with stochastic number of normal machines, and each node is represented as a buffer. The concept of minimal machine vector (MMV), which indicates the minimal capacity required at each workstation to satisfy the demand and time constraints, is presented for evaluating the system reliability. In particular, a novel algorithm based on depth-first search is proposed to derive all MMVs. This algorithm avoids searching for unnecessary child nodes, and thus increases efficiency. Two practical examples, a printed circuit board and a footwear manufacturing systems, are used to illustrate the proposed algorithm. Such a KPI can provide information to production managers to understand the probability that an order can be completed on time.

Original languageEnglish
Pages (from-to)222-235
Number of pages14
JournalJournal of Manufacturing Systems
StatePublished - 1 Oct 2017


  • Depth-first search (DFS)
  • Intermittent production system (IPS)
  • Stochastic number of normal machines
  • System reliability

Fingerprint Dive into the research topics of 'Reliability evaluation for an intermittent production system with stochastic number of normal machines'. Together they form a unique fingerprint.

Cite this