Probabilistic-based adaptive full-duplex and half-duplex medium access control

Shih Ying Chen, Ting Feng Huang, Ching-Ju Lin, Y. W.Peter Hong, Ashutosh Sabharwal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

The feasibility of practical in-band full-duplex radios has recently been demonstrated experimentally. One way to leverage full-duplex in a network setting is to enable three-node full-duplex, where a full-duplex access point (AP) transmits data to one node yet simultaneously receives data from another node. Such three-node full-duplex communication however introduces inter-client interference, directly impacting the full-duplex gain. It hence may not always be beneficial to enable three-node full-duplex transmissions. In this paper, we present a distributed full-duplex medium access control (MAC) protocol that allows an AP to adaptively switch between full-duplex and half-duplex modes. We formulate a model that determines the probabilities of full-duplex and half-duplex access so as to maximize the expected network throughput. A MAC protocol is further proposed to enable the AP and clients to contend for either full-duplex or half-duplex transmissions based on their assigned probabilities in a distributed way. Our evaluation shows that, by combining the advantages of centralized probabilistic scheduling and distributed random access, our design improves the overall throughput by 3.16× and 1.44×, on average, as compared to half-duplex 802.11 and greedy downlink-uplink client pairing.

Original languageEnglish
Title of host publication2015 IEEE Global Communications Conference, GLOBECOM 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479959525
DOIs
StatePublished - 1 Jan 2015
Event58th IEEE Global Communications Conference, GLOBECOM 2015 - San Diego, United States
Duration: 6 Dec 201510 Dec 2015

Publication series

Name2015 IEEE Global Communications Conference, GLOBECOM 2015

Conference

Conference58th IEEE Global Communications Conference, GLOBECOM 2015
CountryUnited States
CitySan Diego
Period6/12/1510/12/15

Fingerprint Dive into the research topics of 'Probabilistic-based adaptive full-duplex and half-duplex medium access control'. Together they form a unique fingerprint.

  • Cite this

    Chen, S. Y., Huang, T. F., Lin, C-J., Hong, Y. W. P., & Sabharwal, A. (2015). Probabilistic-based adaptive full-duplex and half-duplex medium access control. In 2015 IEEE Global Communications Conference, GLOBECOM 2015 [7417126] (2015 IEEE Global Communications Conference, GLOBECOM 2015). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/GLOCOM.2014.7417126