Pragmatical adaptive synchronization - New fuzzy model of two different and complex chaotic systems by new adaptive control

Shih Yu Li*, Hsien Keng Chen, Lap Mou Tam, Sheng-Chieh Huang, Zheng Ming Ge

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

In this paper, (1) a new fuzzy model is presented to simulate two different chaotic systems with different numbers of nonlinear terms and (2) a new adaptive approach and a new control Lyapunov function are proposed to synchronize these two different fuzzy chaotic systems and speed up the convergence of errors. By using this new model, the numbers of fuzzy rules of chaotic systems can be reduced from 2N to 2×N and only 2 subsystems are needed, where N is the number of nonlinear terms. The fuzzy systems become much simpler. In addition, through the new fuzzy model, the new fuzzy systems are much simpler than T-S fuzzy systems (when nonlinear systems are complicated) and can be used to any other kind of application in fuzzy logic control or fuzzy modeling. Mathieu-Van der Pol system (which is called M-V system in this paper) and Quantum cellular neural networks nanosystem (which is called Q-CNN system in this paper) are used for illustrations in numerical simulation results to show the effectiveness and feasibility of our new adaptive approach and new control Lyapunov function. The T-S fuzzy modeling and traditional adaptive control are also given in Appendices B and C for comparison.

Original languageEnglish
Pages (from-to)458-480
Number of pages23
JournalInformation sciences
Volume277
DOIs
StatePublished - 1 Sep 2014

Keywords

  • Mathieu-Van der Pol system
  • New control Lyapunov function
  • New fuzzy model
  • New pragmatical adaptive method

Fingerprint Dive into the research topics of 'Pragmatical adaptive synchronization - New fuzzy model of two different and complex chaotic systems by new adaptive control'. Together they form a unique fingerprint.

Cite this