PLSA-based sparse representation for object classification

Yilin Yan, Jun-Wei Hsieh, Hui Fen Chiang, Shyi C. Cheng, Duan Yu Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

This paper proposes a novel object classification method which uses the concept of probabilistic latent semantic analysis (pLSA) to overcome the problem of sparse representation in data classification. Sparse representation is widely used and quite successful in many vision-based applications. However, it needs to calculate the sparse reconstruction cost (SRC) of each sample to find the best candidate. Because an optimization process is involved, it is very inefficient. In addition, it uses only the residual and does not consider the arrangement (or distribution) of combination coefficients of visual codes in classification. Thus, it often fails to classify categories if they are similar. In this paper, the pLSA concept is first introduced into the sparse representation to build a new classifier without using the SRC measure. The weakness of the pLSA scheme is the use of EM algorithm for updating the posteriori probability of latent class. Because it is very time-consuming, a novel weighting voting strategy is introduced to improve the pLSA scheme for recognizing objects in real time. The advantages of this classifier are: the accuracy is much higher than the SRC scheme and the efficiency is real-time in data classification. Two applications are demonstrated in this paper to prove the superiority of the new classifier, i.e., vehicle make and model recognition, and action analysis.

Original languageEnglish
Title of host publicationProceedings - International Conference on Pattern Recognition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1295-1300
Number of pages6
ISBN (Electronic)9781479952083
DOIs
StatePublished - 4 Dec 2014
Event22nd International Conference on Pattern Recognition, ICPR 2014 - Stockholm, Sweden
Duration: 24 Aug 201428 Aug 2014

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Conference

Conference22nd International Conference on Pattern Recognition, ICPR 2014
CountrySweden
CityStockholm
Period24/08/1428/08/14

Keywords

  • Object classification
  • PLSA
  • Sparse representation

Fingerprint Dive into the research topics of 'PLSA-based sparse representation for object classification'. Together they form a unique fingerprint.

Cite this