Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells

Yicheng Zhao, Hairen Tan, Haifeng Yuan, Zhenyu Yang, James Z. Fan, Junghwan Kim, Oleksandr Voznyy, Xiwen Gong, Li Na Quan, Chia Shan Tan, Johan Hofkens, Dapeng Yu, Qing Zhao*, Edward H. Sargent*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

159 Scopus citations


Formamidinium-lead-iodide (FAPbI3)-based perovskites with bandgap below 1.55 eV are of interest for photovoltaics in view of their close-to-ideal bandgap. Record-performance FAPbI3-based solar cells have relied on fabrication via the sequential-deposition method; however, these devices exhibit unstable output under illumination due to the difficulty of incorporating cesium cations (stabilizer) in sequentially deposited films. Here we devise a perovskite seeding method that efficiently incorporates cesium and beneficially modulates perovskite crystallization. First, perovskite seed crystals are embedded in the PbI2 film. The perovskite seeds serve as cesium sources and act as nuclei to facilitate crystallization during the formation of perovskite. Perovskite films with perovskite seeding growth exhibit a lowered trap density, and the resulting planar solar cells achieve stabilized efficiency of 21.5% with a high open-circuit voltage of 1.13 V and a fill factor that exceeds 80%. The Cs-containing FAPbI3-based devices show a striking improvement in operational stability and retain 60% of their initial efficiency after 140 h operation under one sun illumination.
Original languageEnglish
Article number1607
JournalNature Communications
StatePublished - 23 Apr 2018



Fingerprint Dive into the research topics of 'Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells'. Together they form a unique fingerprint.

Cite this