Permittivity measurement of disk and annular dielectric samples using coaxial transmission line fixtures. Part II: Experimentation and accuracy analyses

Mou-Kehn Ng*, Lotfollah Shafai, Faezeh Safari, Sima Noghanian

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

An improved permittivity measurement technique for dielectric disks involving S-parameter measurement of a two-port coaxial transmission line fixture is presented. The previous form of the method suffers from variation of the retrieved permittivity with frequency, which leads to inaccuracies that may be severe at some frequencies. An extension of the method that reduces these errors is devised. In addition, an independently developed new technique for measuring the permittivity of annular samples via quadratic curve fitting is presented. This technique also involves S-parameter measurement of a coaxial fixture and requires measurement of only three known materials (one of them may be free space, in which case the requirement is reduced to only two solid dielectrics). The permittivity of any unknown dielectric may subsequently be determined with high accuracy over a wide frequency range. The method is based on the premise that the variation of the reflection characteristics of the two-port coaxial transmission line fixture with the permittivity of the sample displays a strongly quadratic behaviour. This paper constitutes the second of two parts of this work. Part I, also appearing in this issue, presents the theoretical formulation for the moment method mode-matching treatment of the coaxial fixture for treating annular samples. In the present paper, the measurement techniques are described, and numerical simulations of the experimental procedure based on the theory of Part I are presented. In addition, comparative results of accuracy for these two approaches are given. Sensitivity analyses are also presented, along with preliminary experimental results.

Original languageEnglish
Article number5291205
Pages (from-to)31-41
Number of pages11
JournalCanadian Journal of Electrical and Computer Engineering
Volume34
Issue number1
DOIs
StatePublished - 1 Dec 2009

Keywords

  • Coaxial waveguides
  • Permittivity measurement
  • Quadratic curve fitting

Fingerprint Dive into the research topics of 'Permittivity measurement of disk and annular dielectric samples using coaxial transmission line fixtures. Part II: Experimentation and accuracy analyses'. Together they form a unique fingerprint.

Cite this