Performance of Fast FH/MFSK Signals in Jammed Binary Channels

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Soft-decision decoded performance of fast frequency-hopped (FH) M-ary FSK signals over partial band noise jammed binary channels is studied. The effects of metrics conversion, quantization, and the presence of regenerative nodes on the system's cutoff rate performance are investigated. It is found that the conversion from an M-ary metric to a binary one suffers only negligible degradations. For communication links without regenerative nodes, as expected, the infinite-bit soft-decision is the optimal metric, followed by finite-bit soft decision and then hard-decision. For those with regenerative nodes, however, the infinite-bit soft-decision is outperformed by the hard-decision, but the finite-bit soft-decision decoder still keeps its edge over the latter. The issue concerning the order of metric conversion and diversity combining is also analyzed. Numerical results indicate that the conclusion obtained by an earlier simulation report addressing a similar design alternative in fading channels is valid for jammed binary channels, as well. That is, the precombining metric conversion technique gives up only minor performance degradations when compared to the more sophisticated postcombining metric conversion technique.

Original languageEnglish
Article number297850
Pages (from-to)2414-2422
Number of pages9
JournalIEEE Transactions on Communications
Volume42
Issue number7
DOIs
StatePublished - Jul 1994

Fingerprint Dive into the research topics of 'Performance of Fast FH/MFSK Signals in Jammed Binary Channels'. Together they form a unique fingerprint.

Cite this