TY - JOUR
T1 - Performance-driven architectural synthesis for distributed register-file microarchitecture with inter-island delay
AU - Huang, Juinn-Dar
AU - Chen, Chia I.
AU - Hsu, Wan Ling
AU - Lin, Yen Ting
AU - Jou, Jing Yang
PY - 2012/1/1
Y1 - 2012/1/1
N2 - In deep-submicron era, wire delay is becoming a bottleneck while pursuing higher system clock speed. Several distributed register (DR) architectures are proposed to cope with this problem by keeping most wires local. In this article, we propose the distributed register-file microarchitecture with inter-island delay (DRFM-IID). Though DRFM-IID is also one of the DR-based architectures, it is considered more practical than the previously proposed DRFM, in terms of delay model. With such delay consideration, the synthesis task is inherently more complicated than the one without inter-island delay concern since uncertain interconnect latency is very likely to seriously impact on the whole system performance. Therefore we also develop a performance-driven architectural synthesis framework targeting DRFM-IID. Several factors for evaluating the quality of results, such as number of inter-island transfers, timing-criticality of transfer, and resource utilization balancing, are adopted as the guidance while performing architectural synthesis for better optimization outcomes. The experimental results show that the latency and the number of inter-cluster transfers can be reduced by 26.9% and 37.5% on average; and the latter is commonly regarded as an indicator for power consumption of on-chip communication.
AB - In deep-submicron era, wire delay is becoming a bottleneck while pursuing higher system clock speed. Several distributed register (DR) architectures are proposed to cope with this problem by keeping most wires local. In this article, we propose the distributed register-file microarchitecture with inter-island delay (DRFM-IID). Though DRFM-IID is also one of the DR-based architectures, it is considered more practical than the previously proposed DRFM, in terms of delay model. With such delay consideration, the synthesis task is inherently more complicated than the one without inter-island delay concern since uncertain interconnect latency is very likely to seriously impact on the whole system performance. Therefore we also develop a performance-driven architectural synthesis framework targeting DRFM-IID. Several factors for evaluating the quality of results, such as number of inter-island transfers, timing-criticality of transfer, and resource utilization balancing, are adopted as the guidance while performing architectural synthesis for better optimization outcomes. The experimental results show that the latency and the number of inter-cluster transfers can be reduced by 26.9% and 37.5% on average; and the latter is commonly regarded as an indicator for power consumption of on-chip communication.
KW - Behavioral synthesis
KW - Distributed register-file
KW - Low-power
KW - Performance optimization
KW - Resource binding
KW - Scheduling
UR - http://www.scopus.com/inward/record.url?scp=84863057342&partnerID=8YFLogxK
U2 - 10.1587/transfun.E95.A.559
DO - 10.1587/transfun.E95.A.559
M3 - Article
AN - SCOPUS:84863057342
VL - E95-A
SP - 559
EP - 566
JO - IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
JF - IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
SN - 0916-8508
IS - 2
ER -