Nitromethane-methyl nitrite rearrangement: A persistent discrepancy between theory and experiment

Minh Tho Nguyen*, Hung Thanh Le, Balázs Hajgató, Tamás Veszprémi, Ming-Chang Lin

*Corresponding author for this work

Research output: Contribution to journalArticle

66 Scopus citations


We reexamined the mechanism of the unimolecular rearrangement connecting both nitromethane and methyl nitrite isomers. The CH3NO2 potential energy surface was constructed using different molecular orbital [CCSD(T) and CASSCF] and density functional theory (B3LYP) methods including a few lower lying isomeric intermediates. A particular attention has been paid to the two following questions left open by earlier experimental and theoretical studies: (a) does the interconversion between nitromethane and methyl nitrite by a 1,2-CH3 migration occur via a "loose" or "tight" transition structure (TS)? and (b) is the energy barrier associated with methyl migration actually smaller or larger than the C-N bond dissociation energy? The C-N bond dissociation energy was evaluated with BDE(CH3-NO2) = 60 ± 2 kcal/mol in line with available results. In contrast to earlier studies (McKee, M. L. J. Phys. Chem. 1989, 93, 7365, and Saxon, R. P.; Yoshimine, M. Can. J. Chem. 1992, 70, 572) but partly in agreement with a recent G2MP2 study (Hu, W. F.; He, T. J.; Chen, D. M.; Liu, F. C. J. Phys. Chem. A 2002, 106, 7294), our multiconfigurational CASSCF computations demonstrated that the methyl migration involves a "tight" TS whose electronic wave function is dominated by the Hartree-Fock configuration. Calculations are thus internally consistent indicating that the energy of the TS for 1,2-CH3 shift is at least 6 kcal/mol above the CH3 + NO2 asymptote. Thus, a discrepancy with a previous evaluation of experimental findings (Wodtke, A. M.; Hintsa, E. J.; Lee, Y. T. J. Phys. Chem. 1986, 90, 3549), which placed the CH3 + NO2 limit by 5 kcal/mol above the rearrangement TS, appears to persist.

Original languageEnglish
Pages (from-to)4286-4291
Number of pages6
JournalJournal of Physical Chemistry A
Issue number21
StatePublished - 29 May 2003

Fingerprint Dive into the research topics of 'Nitromethane-methyl nitrite rearrangement: A persistent discrepancy between theory and experiment'. Together they form a unique fingerprint.

  • Cite this