Abstract
We combine neural network and syntactic pattern recognition, and propose a tree automaton system for the recognition of structural seismic patterns in a seismogram. Multilayer perceptron of the neural network is used for the identification of subpatterns, then a tree representation of the structural seismic pattern is constructed. We use three kinds of modified bottom-up structure preserved error correcting tree automata to recognize the tree representation of syntactic pattern, and propose a new top-down error correcting tree automaton to recognize non-structural preserved seismic pattern. In the experiments, the system is applied to the simulated and the real seismic bright spot patterns. The recognition result can improve seismic interpretation.
Original language | English |
---|---|
Pages (from-to) | 663-668 |
Number of pages | 6 |
Journal | IEEE International Conference on Neural Networks - Conference Proceedings |
Volume | 1 |
DOIs | |
State | Published - 1 Dec 2004 |
Event | 2004 IEEE International Joint Conference on Neural Networks - Proceedings - Budapest, Hungary Duration: 25 Jul 2004 → 29 Jul 2004 |