Neural mechanisms of inhibitory response in a battlefield scenario: A simultaneous fMRI-EEG study

Li-Wei Ko*, Yi Cheng Shih, Rupesh Kumar Chikara, Ya Ting Chuang, Erik C. Chang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The stop-signal paradigm has been widely adopted as a way to parametrically quantify the response inhibition process. To evaluate inhibitory function in realistic environmental settings, the current study compared stop-signal responses in two different scenarios: One uses simple visual symbols as go and stop signals, and the other translates the typical design into a battlefield scenario (BFS) where a sniper-scope view was the background, a terrorist image was the go signal, a hostage image was the stop signal, and the task instructions were to shoot at terrorists only when hostages were not present but to refrain from shooting if hostages appeared. The BFS created a threatening environment and allowed the evaluation of how participants' inhibitory control manifest in this realistic stop-signal task. In order to investigate the participants' brain activities with both high spatial and temporal resolution, simultaneous functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings were acquired. The results demonstrated that both scenarios induced increased activity in the right inferior frontal gyrus (rIFG) and presupplementary motor area (preSMA), which have been linked to response inhibition. Notably, in right temporoparietal junction (rTPJ) we found both higher blood-oxygen-level dependent (BOLD) activation and synchronization of theta-alpha activities (4-12.Hz) in the BFS than in the traditional scenario after the stop signal. The higher activation of rTPJ in the BFS may be related to morality judgments or attentional reorienting. These results provided new insights into the complex brain networks involved in inhibitory control within naturalistic environments.

Original languageEnglish
Article number185
JournalFrontiers in Human Neuroscience
Volume10
Issue numberMAY2016
DOIs
StatePublished - 2 May 2016

Keywords

  • Electroencephalography (EEG)
  • Function magnetic resonance imaging (fMRI)
  • Inhibitory control
  • Right temporoparietal junction (rTPJ)
  • Theta-alpha band

Fingerprint Dive into the research topics of 'Neural mechanisms of inhibitory response in a battlefield scenario: A simultaneous fMRI-EEG study'. Together they form a unique fingerprint.

Cite this