Mining high-utility itemsets with various discount strategies

Jerry Chun Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung Pei Hong, S. Tseng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In recent years, mining high-utility itemsets (HUIs) has become as a key topic in data mining. However, most of the developed algorithms assume the unrealistic situations that unit profits of items remain unchanged over time. But in real-life situations, the profit of an item or itemset varies as a function of cost prices, sales prices and sales strategies. In this paper, a novel framework for mining HUIs with two algorithms under various Discount strategies (HUID) are introduced. HUID-tp is based on various discount strategies and a novel downward closure property to mine the complete set of HUIs. HUID-Miner is an algorithm relying on a compact data structure (Positive-and-Negative Utility-list, PNU-list) and new pruning strategies to efficiently discover HUIs without candidate generation, while considerably reducing the size of the search space. Furthermore, a strategy named Estimated Utility Co-occurrence Strategy which stores the relationships between 2-itemsets is also adopted in the proposed improvement HUID-EMiner algorithm to speed up computation. An extensive experimental study carried on several real-life datasets shows the performance of the proposed algorithms.

Original languageEnglish
Title of host publicationProceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015
EditorsGabriella Pasi, James Kwok, Osmar Zaiane, Patrick Gallinari, Eric Gaussier, Longbing Cao
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467382731
DOIs
StatePublished - 2 Dec 2015
EventIEEE International Conference on Data Science and Advanced Analytics, DSAA 2015 - Paris, France
Duration: 19 Oct 201521 Oct 2015

Publication series

NameProceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015

Conference

ConferenceIEEE International Conference on Data Science and Advanced Analytics, DSAA 2015
CountryFrance
CityParis
Period19/10/1521/10/15

Fingerprint Dive into the research topics of 'Mining high-utility itemsets with various discount strategies'. Together they form a unique fingerprint.

Cite this