Mining differential top-k co-expression patterns from time course comparative gene expression datasets

Yu Cheng Liu, Chun Pei Cheng, Vincent S. Tseng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Background: Frequent pattern mining analysis applied on microarray dataset appears to be a promising strategy for identifying relationships between gene expression levels. Unfortunately, too many itemsets (co-expressed genes) are identified by this analysis method since it does not consider the importance of each gene within biological processes to a cellular response and does not take into account temporal properties under biological treatment-control matched conditions in a microarray dataset.Results: We propose a method termed TIIM (Top-k Impactful Itemsets Miner), which only requires specifying a user-defined number k to explore the top k itemsets with the most significantly differentially co-expressed genes between 2 conditions in a time course. To give genes different weights, a table with impact degrees for each gene was constructed based on the number of neighboring genes that are differently expressed in the dataset within gene regulatory networks. Finally, the resulting top-k impactful itemsets were manually evaluated using previous literature and analyzed by a Gene Ontology enrichment method.Conclusions: In this study, the proposed method was evaluated in 2 publicly available time course microarray datasets with 2 different experimental conditions. Both datasets identified potential itemsets with co-expressed genes evaluated from the literature and showed higher accuracies compared to the 2 corresponding control methods: i) performing TIIM without considering the gene expression differentiation between 2 different experimental conditions and impact degrees, and ii) performing TIIM with a constant impact degree for each gene. Our proposed method found that several new gene regulations involved in these itemsets were useful for biologists and provided further insights into the mechanisms underpinning biological processes. The Java source code and other related materials used in this study are available at " http://websystem.csie.ncku.edu.tw/TIIM_Program.rar"

Original languageEnglish
Article number230
Pages (from-to)1-13
Number of pages13
JournalBMC Bioinformatics
Volume14
Issue number1
DOIs
StatePublished - 21 Jul 2013

Fingerprint Dive into the research topics of 'Mining differential top-k co-expression patterns from time course comparative gene expression datasets'. Together they form a unique fingerprint.

Cite this