Abstract
Research of the strain effect on semiconductors and their heterostructures has generated increasing interests due to its important device applications. We have developed a eutectic bonding technique to create in-plane anisotropic strain in GaAs/AlGaAs multiple quantum well (MQW) thin films. MQW thin films grown on (100) GaAs substrates were bonded to (100) GaAs, (100) Si and Y-cut LiNbO 3 submounts with a Au/Sn eutectic alloy. The bonding materials consist of Au/Sn multilayer (80 wt% Au and 20 wt% Sn; 0.95μm) with a Cr (500angstrom) adhesion layer. The bonding process was optimized by carefully choosing the annealing conditions. After bonding, the substrates of the MQWs were removed by wet chemical etching. The in-plane strain was induced in MQW thin film due to the different thermal expansion between the thin film and submount. The strain was characterized using X-ray rocking curve. The microstructures of bonding interfaces and MQW thin films were examined by scanning electron microscope(SEM) and cross-section transmission electron microscope (XTEM). This bonding technique can be used for many new device applications which take the advantage of in-plane strain, as well as for device integration.
Original language | English |
---|---|
Pages (from-to) | 331-336 |
Number of pages | 6 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 356 |
DOIs | |
State | Published - 1 Jan 1995 |
Event | Proceedings of the 1994 MRS Fall Meeting - Boston, MA, USA Duration: 28 Nov 1994 → 2 Dec 1994 |