TY - JOUR
T1 - MI6: Metal Ion-Binding Site Prediction and Docking Server
AU - Lin, Yu Feng
AU - Cheng, Chih Wen
AU - Shih, Chung-Shiuan
AU - Hwang, Jenn-Kang
AU - Yu, Chin Sheng
AU - Lu, Chih Hao
PY - 2016/12
Y1 - 2016/12
N2 - The structure of a protein determines its biological function(s) and its interactions with other factors; the binding regions tend to be conserved in sequence and structure, and the interacting residues involved are usually in close 3D space. The Protein Data Bank currently contains more than 110 000 protein structures, approximately one-third of which contain metal ions. Identifying and characterizing metal ion-binding sites is thus essential for investigating a protein's function(s) and interactions. However, experimental approaches are time-consuming and costly. The web server reported here was built to predict metal ion-binding residues and to generate the predicted metal ion-bound 3D structure. Binding templates have been constructed for regions that bind 12 types of metal ion-binding residues have been used to construct binding templates. The templates include residues within 3.5 angstrom of the metal ion, and the fragment transformation method was used for structural comparison between query proteins and templates without any data training. Through the adjustment of scoring functions, which are based on the similarity of structure and binding residues. Twelve kinds of metal ions (Ca2+, Cu2+, Fe3+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2+, and Cu+) binding residues prediction are supported. MIB also provides the metal ions docking after prediction. The MIB server is available at http://bioinfo.cmu.edu.tw/MIB/.
AB - The structure of a protein determines its biological function(s) and its interactions with other factors; the binding regions tend to be conserved in sequence and structure, and the interacting residues involved are usually in close 3D space. The Protein Data Bank currently contains more than 110 000 protein structures, approximately one-third of which contain metal ions. Identifying and characterizing metal ion-binding sites is thus essential for investigating a protein's function(s) and interactions. However, experimental approaches are time-consuming and costly. The web server reported here was built to predict metal ion-binding residues and to generate the predicted metal ion-bound 3D structure. Binding templates have been constructed for regions that bind 12 types of metal ion-binding residues have been used to construct binding templates. The templates include residues within 3.5 angstrom of the metal ion, and the fragment transformation method was used for structural comparison between query proteins and templates without any data training. Through the adjustment of scoring functions, which are based on the similarity of structure and binding residues. Twelve kinds of metal ions (Ca2+, Cu2+, Fe3+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2+, and Cu+) binding residues prediction are supported. MIB also provides the metal ions docking after prediction. The MIB server is available at http://bioinfo.cmu.edu.tw/MIB/.
KW - PROTEINS; SEQUENCE; IDENTIFICATION; CELLS
U2 - 10.1021/acs.jcim.6b00407
DO - 10.1021/acs.jcim.6b00407
M3 - Article
C2 - 27976886
VL - 56
SP - 2287
EP - 2291
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
SN - 1549-9596
IS - 12
ER -