Mapping single-trial EEG records on the cortical surface through a spatiotemporal modality

Arthur C. Tsai*, Michelle Liou, Tzyy Ping Jung, Julie A. Onton, Philip E. Cheng, Chien Chih Huang, Jeng Ren Duann, Scott Makeig

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Event-related potentials (ERPs) induced by visual perception and cognitive tasks have been extensively studied in neuropsychological experiments. ERP activities time-locked to stimulus presentation and task performance are often observed separately at individual scalp channels based on averaged time series across epochs and experimental subjects. An analysis using averaged EEG dynamics could discount information regarding interdependency between ongoing EEG and salient ERP features. Advanced tools such as independent component analysis (ICA) have been developed for decomposing collections of single-trial EEG records into separate features. Those features (or independent components) can then be mapped onto the cortical surface using source localization algorithms to visualize brain activation maps and to study between-subject consistency. In this study, we propose a statistical framework for estimating the time course of spatiotemporally independent EEG components simultaneously with their cortical distributions. Within this framework, we implemented Bayesian spatiotemporal analysis for imaging the sources of EEG features on the cortical surface. The framework allows researchers to include prior knowledge regarding spatial locations as well as spatiotemporal independence of different EEG sources. The use of the Electromagnetic Spatiotemporal ICA (EMSICA) method is illustrated by mapping event-related EEG dynamics induced by events in a visual two-back continuous performance task. The proposed method successfully identified several interesting components with plausible corresponding cortical activation topographies, including processes contributing to the late positive complex (LPC) located in central parietal, frontal midline, and anterior cingulate cortex, to atypical mu rhythms associated with the precentral gyrus, and to the central posterior alpha activity in the precuneus.

Original languageEnglish
Pages (from-to)195-207
Number of pages13
JournalNeuroImage
Volume32
Issue number1
DOIs
StatePublished - 1 Aug 2006

Keywords

  • Bayesian spatiotemporal analysis
  • Event-related potentials
  • ICA
  • Inverse problem

Fingerprint Dive into the research topics of 'Mapping single-trial EEG records on the cortical surface through a spatiotemporal modality'. Together they form a unique fingerprint.

Cite this