Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy

Chih Yu Kuo, Ting Yu Liu*, Tzu Yi Chan, Sung Chen Tsai, Andri Hardiansyah, Li Ying Huang, Ming Chien Yang, Ruey Hwa Lu, Jeng Kai Jiang, Chih Yung Yang, Chi Hung Lin, Wen Yen Chiu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Magnetic silica core/shell nanovehicles presenting atherosclerotic plaque-specific peptide-1 (AP-1) as a targeting ligand (MPVA-AP1 nanovehicles) have been prepared through a double-emulsion method and surface modification. Amphiphilic poly(vinyl alcohol) was introduced as a polymer binder to encapsulate various drug molecules (hydrophobic, hydrophilic, polymeric) and magnetic iron oxide (Fe3O4) nanoparticles. Under a high-frequency magnetic field, magnetic carriers (diameter: ca. 50 nm) incorporating the anti-cancer drug doxorubicin collapsed, releasing approximately 80% of the drug payload, due to the heat generated by the rapidly rotating Fe3O4 nanoparticles, thereby realizing rapid and accurate controlled drug release. Simultaneously, the magnetic Fe3O4 themselves could also kill the tumor cells through a hyperthermia effect (inductive heating). Unlike their ungrafted congeners (MPVA nanovehicles), the AP1-grafted nanovehicles bound efficiently to colorectal cancer cells (CT26-IL4Rα), thereby displaying tumor-cell selectivity. The combination of remote control, targeted dosing, drug-loading flexibility, and thermotherapy and chemotherapy suggests that magnetic nanovehicles such as MPVA-AP1 have great potential for application in cancer therapy.

Original languageEnglish
Pages (from-to)567-573
Number of pages7
JournalColloids and Surfaces B: Biointerfaces
Volume140
DOIs
StatePublished - 1 Apr 2016

Keywords

  • Drug controlled release
  • Magnetic nanovehicles
  • Stimuli-triggered release
  • Surface modification
  • Targeting therapy

Fingerprint Dive into the research topics of 'Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy'. Together they form a unique fingerprint.

Cite this