Lithography-free thin-titanium-nanocone metamaterial perfect absorbers using ZnO nanostructures

Albert Lin, Parag Parashar, Chih Chieh Yang, Ding Rung Jian, Wei Ming Huang, Yi Wen Huang, Tseung-Yuen Tseng

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

In this work, thin Ti nanocones are deposited on top of the arrays of ZnO nanopagodas, and the whole structure works as an efficient nanostructured metamaterial perfect absorber (MPA) without using lithography and dry etching. In this design, ~1μm long ZnO nanopagoda arrays are grown on a 100 nm ZnO buffer layer over the silicon/glass substrate by a treatment with an aqueous solution of L-ascorbic acid. Growth direction and the degree of lamination in the ZnO nanostructures can be easily controlled by adjusting the concentration of L-ascorbic acid. Afterward, these ZnO nanopagodas are coated with a 30nm thin top and a 500nm thick bottom layer of Ti to achieve the proposed nanocone resonant cavity structure with electromagnetic wave field penetration. The overall structure encapsulates three physical concepts, namely, field penetration, adiabatic coupling and cavity resonance, which contribute the broadband perfect absorption. The entire process is carried out at a low temperature ( < 90°). We believe the proposed tapered Ti nanocones MPA structure facilitates ultra-broadband perfect spectral absorption with promising nature of lowcost, large-area, and lithography-free.

Original languageEnglish
Article number301712
JournalOptical Materials Express
Volume7
Issue number10
DOIs
StatePublished - 1 Jan 2017

Fingerprint Dive into the research topics of 'Lithography-free thin-titanium-nanocone metamaterial perfect absorbers using ZnO nanostructures'. Together they form a unique fingerprint.

Cite this